• <nav id="rnn99"></nav><nav id="rnn99"></nav>

      述職報告之家

      你的位置: 述職報告之家 > 述職范文 > 導航 > 初中數學知識點匯總(集錦5篇)

      初中數學知識點匯總

      發表時間:2024-12-31

      初中數學知識點匯總(集錦5篇)。

      總結是對某一階段的工作、學習或思想中的經驗或情況進行分析研究的書面材料,它可以促使我們思考,為此要我們寫一份總結。你所見過的總結應該是什么樣的?以下是小編精心整理的新人教版初中數學知識點總結(完整版),歡迎大家借鑒與參考,希望對大家有所幫助。

      初中數學知識點匯總 篇1

      1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態,此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

      2、幾種幾何圖形的重心:

      ⑴線段的重心就是線段的中點;

      ⑵平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;

      ⑶三角形的三條中線交于一點,這一點就是三角形的重心;

      ⑷任意多邊形都有重心,以多邊形的.任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。

      提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;

      ⑵從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

      3、常見圖形重心的性質:

      ⑴線段的重心把線段分為兩等份;

      ⑵平行四邊形的重心把對角線分為兩等份;

      ⑶三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

      上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數學知識。

      初中數學知識點匯總 篇2

      1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

      2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

      (2)角平分線上的點到角兩邊距離相等。

      (3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。

      (4)與一條線段兩個端點距離相等的點,在這條線段的'垂直平分線上。

      (5)軸對稱圖形上對應線段相等、對應角相等。

      3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)

      4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

      5.等腰三角形的判定:等角對等邊。

      6.等邊三角形角的特點:三個內角相等,等于60°,

      7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。

      有一個角是60°的等腰三角形是等邊三角形

      有兩個角是60°的三角形是等邊三角形。

      8.直角三角形中,30°角所對的直角邊等于斜邊的一半。

      9.直角三角形斜邊上的中線等于斜邊的一半。

      本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,并利用這些性質來解決一些數學問題。

      初中數學知識點匯總 篇3

      三角和的公式

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      倍角公式

      tan2A = 2tanA/(1-tan2 A)

      Sin2A=2SinA?CosA

      Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

      三倍角公式

      sin3A = 3sinA-4(sinA)3;

      cos3A = 4(cosA)3 -3cosA

      tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

      三角函數特殊值

      α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

      α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

      a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

      α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

      α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

      α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

      α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

      α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

      α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

      α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

      α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      三角函數記憶順口溜

      1三角函數記憶口訣

      “奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的'名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

      以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2

      2符號判斷口訣

      全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。

      也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱??谠E中未提及的都是負值。

      “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數為正值。

      3三角函數順口溜

      三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。

      同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

      中心記上數字一,連結頂點三角形。向下三角平方和,倒數關系是對角,

      頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,

      變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

      將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,

      余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

      計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

      逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

      萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

      一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

      三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

      利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

      初中數學知識點匯總 篇4

      1、一元二次方程解法:

      (1)配方法:(X±a)2=b(b≥0)注:二次項系數必須化為1

      (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

      若b2-4ac>0則有兩個不相等的.實根,若b2-4ac=0則有兩個相等的實根,若b2-4ac

      若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

      (3)分解因式法

      ①提公因式法:ma+mb=0→m(a+b)=0

      平方差公式:a2-b2=0→(a+b)(a-b)=0【wWw.YjS21.cOm 幼兒教師教育網】

      ②運用公式法:

      完全平方公式:a2±2ab+b2=0→(a±b)2=0

      ③十字相乘法

      2、銳角三角函數定義

      銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。

      正弦(sin):對邊比斜邊,即sinA=a/c;

      余弦(cos):鄰邊比斜邊,即cosA=b/c;

      正切(tan):對邊比鄰邊,即tanA=a/b;

      余切(cot):鄰邊比對邊,即cotA=b/a;

      3、積的關系

      sinα=tanα·cosα

      cosα=cotα·sinα

      tanα=sinα·secα

      cotα=cosα·cscα

      secα=tanα·cscα

      cscα=secα·cotα

      4、倒數關系

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      5、兩角和差公式

      sin(A+B) = sinAcosB+cosAsinB

      sin(A-B) = sinAcosB-cosAsinB

      cos(A+B) = cosAcosB-sinAsinB

      cos(A-B) = cosAcosB+sinAsinB

      tan(A+B) = (tanA+tanB)/(1-tanAtanB)

      tan(A-B) = (tanA-tanB)/(1+tanAtanB)

      cot(A+B) = (cotAcotB-1)/(cotB+cotA)

      cot(A-B) = (cotAcotB+1)/(cotB-cotA)

      初中數學知識點匯總 篇5

      初中數學的學科地位很高,一直以來是三大學科之一,影響著物理化學的學習。

      圓心角

      在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

      推理過程

      根據旋轉的性質,將∠aob繞圓心o旋轉到∠aob的`位置時,顯然∠aob=∠aob,射線oa與oa重合,ob與ob重合,而同圓的半徑相等,oa=oa,ob=ob,從而點a與a重合,b與b重合。

      因此,弧ab與弧ab重合,ab與ab重合。即

      弧ab=弧ab,ab=ab。

      則得到上面定理。

      同樣還可以得到:

      在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

      在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

      所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應的其余各組量也相等。

      圓的圓心角知識要領很容易掌握,經常會出現在關于圓的證明題中。

      最新男女啪啪资源